RCAN1 Overexpression Exacerbates Calcium Overloading-Induced Neuronal Apoptosis
نویسندگان
چکیده
Down Syndrome (DS) patients develop characteristic Alzheimer's Disease (AD) neuropathology after their middle age. Prominent neuronal loss has been observed in the cortical regions of AD brains. However, the underlying mechanism leading to this neuronal loss in both DS and AD remains to be elucidated. Calcium overloading and oxidative stress have been implicated in AD pathogenesis. Two major isoforms of regulator of calcineurin 1 (RCAN1), RCAN1.1 and RCAN1.4, are detected in human brains. In this report we defined the transcriptional regulation of RCAN1.1 and RCAN1.4 by two alternative promoters. Calcium overloading upregulated RCAN1.4 expression by activating RCAN1.4 promoter through calcineurin-NFAT signaling pathway, thus forming a negative feedback loop in isoform 4 regulation. Furthermore, RCAN1.4 overexpression exacerbated calcium overloading-induced neuronal apoptosis, which was mediated by caspase-3 apoptotic pathway. Our results suggest that downregulating RCAN1.4 expression in neurons could be beneficial to AD patients.
منابع مشابه
Regulator of calcineurin 1 (RCAN1) facilitates neuronal apoptosis through caspase-3 activation.
Individuals with Down syndrome (DS) will inevitably develop Alzheimer disease (AD) neuropathology sometime after middle age, which may be attributable to genes triplicated in individuals with DS. The characteristics of AD neuropathology include neuritic plaques, neurofibrillary tangles, and neuronal loss in various brain regions. The mechanism underlying neurodegeneration in AD and DS remains e...
متن کاملOverexpression of Rcan1-1L Inhibits Hypoxia-Induced Cell Apoptosis through Induction of Mitophagy
Mitophagy, a cellular process that selectively targets dysfunctional mitochondria for degradation, is currently a hot topic in research into the pathogenesis and treatment of many human diseases. Considering that hypoxia causes mitochondrial dysfunction, which results in cell death, we speculated that selective activation of mitophagy might promote cell survival under hypoxic conditions. In the...
متن کاملRCAN1 Is an Important Mediator of Glucocorticoid-Induced Apoptosis in Human Leukemic Cells
Glucocorticoid (GC) is a major therapeutic agent for the treatment of leukemia because of its ability to induce apoptosis in lymphoid cells. The mechanism causing apoptosis, however, is still controversial. Since the glucocorticoid receptor is a transcription factor, some of its target genes are expected to be implicated in apoptosis. In this study, using a GC-sensitive human pre-B leukemia cel...
متن کاملRcan1 deficiency impairs neuronal migration and causes periventricular heterotopia.
Periventricular heterotopia (PH) is a cortical malformation characterized by aggregation of neurons lining the lateral ventricles due to abnormal neuronal migration. The molecular mechanism underlying the pathogenesis of PH is unclear. Here we show that Regulators of calcineurin 1 (Rcan1), a Down syndrome-related gene, plays an important role in radial migration of rat cortical neurons. Downreg...
متن کاملThe calcineurin inhibitor Sarah (Nebula) exacerbates Aβ42 phenotypes in a Drosophila model of Alzheimer's disease.
Expression of the Down syndrome critical region 1 (DSCR1) protein, an inhibitor of the Ca(2+)-dependent phosphatase calcineurin, is elevated in the brains of individuals with Down syndrome (DS) or Alzheimer's disease (AD). Although increased levels of DSCR1 were often observed to be deleterious to neuronal health, its beneficial effects against AD neuropathology have also been reported, and the...
متن کامل